High-Voltage GaN-Based Half-Bridge Converter Design

Hamza Dugmag

Laboratory for Advanced Power Conversion and Systems Analysis

May 2024 to August 2024

Agenda

- 1. Motivation
- 2. Switch Selection
- 3. Circuit Design
- 4. Simulations
- 5. PCB Design
- 6. Fabrication
- 7. Firmware
- 8. Testing
- 9. Conclusion

1/9 Motivation

Synchronous Motors (SM)

- Permanent magnet rotor \rightarrow PMSMs
- Synchronous with stator magnetic field
 - Constant speed regardless of load
- Traditionally radial-flux
- Industrial applications
 - Pumps, fans, etc.

Variable Frequency Drive (VFD)

- Speed control → match energy demand
- AC (480VAC grid) \rightarrow DC (679VDC) \rightarrow AC (motor)

PCB-Stator PMSMs

- Axial flux
- • Fficiency
- ↓ Manufacturing Cost

PCB-Stator

- Low stator inductance!
 - 10s of μH
- VFD switching frequency vs. filter size/weight/cost

WBG Semiconductors

- SiC: 100s of kHz (↑↑ voltage)
- GaN: up to MHz! (↑↑ efficiency)

- High frequency, voltage, temperature applications
- Recently, GaN is showing $\uparrow \uparrow V$ and $\downarrow \$ \rightarrow$ use in VFDs!

Project Objectives

- First step towards GaN-VFD for PCB-stator PMSMs
 - 2-year plan at LAPCSA
- Synchronous buck using **new** ultra high-voltage GaN switches
 - Open-loop SPWM (unidirectional half-bridge)
 - 679V
 - 3A
 - 200kHz
- Learn about GaN layout and driving techniques
- End-to-end ownership

2/9 Switch Selection

- $\downarrow R_{ds,on} \rightarrow \downarrow P_{cond}$
- \checkmark Capacitances $\rightarrow \checkmark P_{sw}$
 - \uparrow Switching speed and $f_{sw,max}$
- Effective body diode with $Q_{rr} = 0$

MOSFET

GaN E-HEMT

GaN Challenges

- *↑ di/dt*
 - EMI generation
 - Parasitic inductance voltage spikes and ringing
- $\uparrow dv/dt$
 - EMI generation
 - Parasitic capacitance leakage currents
 - Gate mis-triggering ($\forall V_{th}$)
- Schottky gate $\rightarrow \downarrow V_{gs}$ margin
- And more!

	V_{in} V_{in} Q1 V_{g1} V_{g1} V_{g2}	$C_{mill} \downarrow $	V_{in} $Q1$ V_{gs1} U_{gs1} U_{gs1} U_{gs2} $Q2$	
	V_{G1} $V_{th,dri}$ V_{G2}	V _{G1} V _G V _G V _{G2} V _G		
	v _{gs1} v _{gs2}	V _{gs1} V _{th} V _{gs} V _{gs} V _{gs}	2 V _{th}	
Ref.	Problem Statement	Root Cause	Solution	
[101-106]	Voltage overshoot and oscillation in gate and power loop during switching action	Power loop and gate loop inductance	Reduction of loop inductance, slowing down switching action	
[107-108]	Coupling of power and gate loop	Common source inductance	Use of kelvin connection	
[109]	Coupling of power and gate loop	Coupling through mutual magnetic flux	Orthogonal placement of power and gate loop to reduce coupling	
[110-114]	PWM distortion and subsequent mis-triggering	CM EMI noise due to high dV/dt, CM to DM noise transformation	Cascaded isolator stage in gate driver and EMI filter to reroute EMI noise	
[115-121]	Mis-triggering of gate	Induced by leakage current from C_{gd}	Use of low gate resistance for turn off path, reduction of L_g	
[123-125]	Dynamic current imbalance	Asymmetric power and gate loop, uneven heating of parallel die	Symmetric layout, Active gate driver solution	
[126-128]	Coupling of power and gate loop in parallel device	Quasi common source inductance	Symmetric layout for power and gate loop, Unsynchronized gate driver	
[129-130]	Circulating current in parallel device	Mismatch of input capacitance in paralleled device	Distributed gate resistance, diodes in gate loop of paralleled device	
[131-133]	Sustained oscillation during reverse conduction	Instability due to the reverse conduction mechanism and feedback loop formed with circuit parasitic	Reduction of circuit parasitics, antiparallel diode across GaN transistors, RC snubber	
[134-136]	Dynamic on resistance	Hot electron trapping under high electric field	Connection of the substrate to source potential to redistribute electric field	
[137-141]	EMI induced compatibility problem	Impact of noise voltage source is shaped by the switching speed	Integrated EMI filter, reduction of stray capacitance from switching node	

Miller Plateau

- C_{gd} charging interrupts C_{gs} charging
- $\uparrow P_{sw}$
- ↑ /_g:
 - ↓ Miller time

Market Study

- Mostly 650V devices... (<679V×FOS)
- Two suppliers of 900/1200V GaN
 - Enhancement Mode: IGaNPower
 - Nominally off: $V_{\rm th} > 0$
 - Depletion Mode: Transphorm
 - Nominally on: $V_{\rm th} < 0$
 - Techniques for nominally off:

GANPOWER

transphorm

INTERNATIONAL

D-Mode Cascode

- More robust
 - Partly from $\uparrow V_{th}$
- Low-voltage series Si MOSFET:
 - $\uparrow R_{ds,on} \rightarrow \uparrow P_{cond}$
 - Q_{rr} > 0
 - \uparrow Capacitances $\rightarrow \uparrow P_{sw}$
 - \downarrow Switching speed and $f_{sw,max}$

G

Technology Comparison

- Hypothesis: eGaN > dGaN > SiC
 - Speed and losses
- Compare devices with similar BV_{DSS}, package (layout and cooling), junction size:
 - *I*_{ds,max} = ~30 A
 - $R_{\rm ds,on}$ = ~50 m Ω
 - *T*_{max} = ~150 °C
- Simulate in LTspice

Comparative Simulation

- Investigate hard-switching
 - Ideal half-bridge, LC filter, R load
 - Ideal driving, SPWM
 - V_{gs,op} [V] and R_g [Ω] from datasheet/application notes
- Efficiency results:
 - eGaN: ~99%
 - dGaN: ~96%
 - SiC: ~98%

Circuit Parameters	
Toperate [°C]	25
Vdc [V]	678.82
ma	0.95
mf	3333
f1 [Hz]	60
fsw [Hz]	199980
tdead [ns]	200.02
Lo [mH]	1
Co [nF]	700
Ro [Ohm]	45.6

Switch Selection

- 1200V 30A *IGaNPower* out of stock...
- Try 900V 10A:
 - Will get similar learning experience

• GPI90010DF88:

- DFN8x8 package (ΨL_{lead})
- *BV*_{DSS} = 900 V
- *I*_{ds,max} = 10 A
- $R_{\rm ds,on}$ = 120 m Ω
- Bottom-cooled

3/9 Circuit Design

Microcontroller

- TI F28379D LaunchPad (C2000):
 - Isolated USB
 - 3.3 V
 - 12/16-bit ADCs
 - High resolution PWM:
 - Complementary channels
 - Dead time support
 - 100 MHz resolution

Gate Resistors

- Control C_{gs} (dis)charging
- $R_{\rm off} < R_{\rm on}$
 - Guarantee turn-off before turn-on of other side (avoid shoot-through)
 - ↓ Miller turn-on
- Trade-offs with $\uparrow R$:
 - Pros: ↓ EMI and ringing, ↓ Gate driver power
 - Cons: \downarrow Switching speed and \uparrow Miller plateau $\rightarrow \uparrow P_{sw}$
- Optimized in simulation
 - Difficult to calculate analytically
 - Expect on the order of $5\text{--}30\Omega$
 - Want slight underdamping

Negative-Voltage Turn-Off

- Pros:
 - ↑ Noise immunity
 - Recall $\downarrow V_{\text{th}}$
 - \downarrow Switching-off loss
- Cons:

 - Difficult implementation
- Pros + other GaN benefits outweigh cons

Switching-off loss of GS66516B vs. current at V_{BUS} =400 V, 25°C, R_G =1 Ω

Level-Shifting

- Gate drivers output >0V... Clamp with Zener diodes!
- Cheaper and simpler than digital isolator + non-isolated driver
- Recommended by IGaNPower, GaNSystems, and Nexperia

Miller Clamp

- Stabilize turn-on voltage $\rightarrow \downarrow$ Overdriving risk
- Mitigate parasitic Miller turn-on from $\uparrow dv/dt$
 - $C_{\rm gd}$ tries to pull up $V_{\rm gs}$
- Zener diodes act as passive Miller clamp
 - Low impedance path for $C_{\rm gd}$

Figure 6. Active Miller Clamp Technology

Dead-Time

• Limited by DSP's PWM resolution: 100MHz \rightarrow 10ns

S1

S2

- Rule of thumb: 1% of T_{sw}
 - 0.01/200k = 50ns
- Testing at <5A:
 - Low *V*_{bus}: ~50ns
 - Nominal V_{bus}: ~200ns

ON

OFF

OFF

ON

ON

OFF

Gate Driver

• Silicon Labs Si8273:

- Recommended by many GaN suppliers
- High CMTI (200 kV/µs)
- Isolation (semiconductor-based)
- Half-bridge driver \rightarrow easy implementation

VIA

VIB

VOA

VOB

Α

В

С

DE

F G H I

- <1500 V bus
- Overlap protection
- Si8274: hard to change DT

Bootstrapping

- Floating high-side source!
- *D*_B:
 - Minimize recovery time
 - Reverse-block full bus voltage

• $R_{\rm B}$: Design to minimize inrush current on startup

Figure 1.2. Bootstrap Circuit—C_B Sourcing

 $Q_{CB} = Q_G + (t_{Lmax} \times I_B)$

RC Snubber

- Cheap, simple, popular
- Protect against voltage transients:
 - \checkmark Spikes and oscillations
 - \uparrow Lifespan and \downarrow EMI
- $C_{sn} > C_{oss}$: low impedance path
- *R*_{sn}: additional damping and dissipate power externally
- Design process:
 - Refer to application notes
 - Optimize in simulation

LC Filter

- Second order
- Lossless
- SPWM:
 - Fundamental at 60Hz
 - Harmonics around multiples of 200kHz

INPUT

L1

LΗ

δð

OUTPUT

C1

CF

- 1mH and 0.7µF \rightarrow ~6000 Hz cutoff
- ~10% max inductor current ripple
 - Balance inductor size/\$ and core losses

Current Sensing

• Simple current sensing for open-loop monitoring

• TI TMCS1123:

- Hall effect sensor
- 250kHz signal bandwidth
- High current:
 - Positive and negative

	PRODUCT	SENSITIVITY	ZERO CURRENT OUTPUT VOLTAGE	IIN LINEAR MEASUREMENT RANGE ⁽¹⁾	
				V _S = 5V	V _S = 3.3V
th	TMCS1123A1A	25mV/A	2.5V	±96A ⁽²⁾	-96A to 28A ⁽²⁾
	TMCS1123A2A	50mV/A		±48A ⁽²⁾	-48A to 14A ⁽²⁾
	TMCS1123A3A	75mV/A		±32A	-32A to 9.3A
	TMCS1123A4A	100mV/A		±24A	-24A to 7A
	TMCS1123A5A	150mV/A		±16A	-16A to 4.7A
	TMCS1123B1A	25mV/A	1.65V	-62A to 130A ⁽²⁾	±62A ⁽²⁾
	TMCS1123B2A	50mV/A		-31A to 65A ⁽²⁾	±31A
	TMCS1123B3A	75mV/A		-20.7A to 43.3A ⁽²⁾	±20.7A
	TMCS1123B4A	100mV/A		-15.5A to 32.5A	±15.5A
	TMCS1123B5A	150mV/A		-10.3A to 21.7A	±10.3A
	TMCS1123C1A	25mV/A	0.33V	–9.2A to 183A ⁽²⁾	–9.2A to 115A ⁽²⁾
	TMCS1123C2A	50mV/A		-4.6A to 91.4A ⁽²⁾	-4.6A to 57.4A ⁽²⁾
	TMCS1123C3A	75mV/A		-3.1A to 60.9A ⁽²⁾	-3.1A to 38.3A ⁽²⁾
	TMCS1123C4A	100mV/A		-2.3A to 45.7A ⁽²⁾	-2.3A to 28.7A
	TMCS1123C5A	150mV/A		-1.5A to 30.5A	-1.5A to 19.1A

Maximize sensitivity (maximize ADC resolution utilization) while measuring up to $I_{\rm ds,max}$

4/9 Simulations

Convergence

- Challenge: Slow simulation speed!
 - Complex gate driver and GaN models
- Solution:
 - Trade-off accuracy for time
 - Try different solvers
 - Analyze over a single cycle
 - Add series resistors to voltage sources
 → modelled as current sources

Simulation Speed: 6.27211 ps/s

SPWM

- *f*₁ = 60 Hz
- $f_{\rm sw} \approx 200 \; \rm kHz$
- $m_{\rm f} = f_{\rm sw}/f_1 = 3333$
 - Avoid non-integer value (especially for AC motors) \rightarrow no subharmonics of f_1
 - Odd integer: odd and half-wave symmetries → no even harmonics
- $m_{\rm a} = V_{\rm ref} / V_{\rm tri} = 0.95$
 - Avoid overmodulation (>1.0), o/w difficult to filter harmonics

Gate Driving

- Ideal PWM input with DT
- \rightarrow Gate driver model
- \rightarrow Level-shifting circuit

R19

{Rez}

C11

{Cez}

• Make use of variables

{Ron}

R18

D1

GND

Ltrace/

D_schottky { Roff

Gating Dynamics

- Level-shifting:
 - As desired
- Gate resistances:
 - Underdamping
- Miller plateau:
 - As desired
- Ground bounce:
 - Minimal
 - Below V_{th}

Switching Node

- Modelled trace inductances
 - Iterative process with PCB layout
 - Worst case ~10 nH
- Damped ringing with snubbers

Harmonics Analysis

- Clean inductor current ripple
- FFT shows proper filtering
 - Even harmonics suppressed too

Current Analysis

- $I_{\rm CB}$ initial spike limited by $R_{\rm B}$
- Extract average and peak currents for PCB trace width design
- Extract resistor powers for sizing

Power Analysis

- Efficiency = 99.2%
- >10W per switch
 - Mostly $P_{\rm sw}$ ($R_{\rm ds,on}$ = 120 m Ω)

$$P_{\text{INV(cond)}} = I_{\text{rms}_f}^2 R_{DS} + \sum_{n=1}^3 I_{\text{rms}(n)}^2 R_{DS}.$$

$$P_{\rm INV(sw)} = V_{dc} I_{\rm rms} \frac{(t_{\rm rise} + t_{\rm fall})}{2} f_{sw}$$

Thermal Analysis

- Iterative process with PCB layout
 - Thermal vias, heatsink and TIM selection

R_{DS(on)}

---> Conduction Loss

Switching Loss

- Design for 15W, $T_A = 30^{\circ}$ C as a FOS
- *T*_{jmax} = 150 °C

Thermal runaway

Thermal

steady-state

PCB top copper lave

PCB Bottom copper layer

High junction temp T_J with bad thermal design

Low junction temp T₁ with

good thermal design

Thermal vias

Thermal interface material Heat Sink Junction

Rejc

 $\leq R_{\text{BSolde}}$

 $\geq R_{epcb}$

Retim

Rense

GaNPx bottom-cool

Internal copper lay

Heatsink and TIM Selection

- Metal-based PCB?
 - $\downarrow \downarrow R_{\theta JHS}$ but $\uparrow \uparrow \$$

• Hi-Flow THF 1600P:

- Thermally conductive, electrically isolated
- 0.102 mm thickness
- 1.6 W/m·K
- Non-liquid
- Heatsink:
 - Black (for thermal camera)
 - PCB layout \rightleftharpoons HS size

5/9 PCB Design

Layer Stack

- Operating frequency in the kHz → don't worry about impedance and length matching
- 4 layers:
 - **Top**
 - PWR
 - GND
 - Bottom
- Benefits:
 - Simplify routing
 - Increase density
 - Acceptable cost

#	Name	Туре	Thickness	#	Thru 1:4	ł	
	Top Overlay	Overlay					
	Top Solder	Solder Mask	0.4mil				
1	Top Layer	Signal	1.378mil	1			
	Dielectric 4	Prepreg	2.8mil				
2	Layer 2	Signal	1.378mil	2			
	Dielectric 1	Dielectric	12.6mil				
З	Layer 3	Signal	1.378mil	3			
	Dielectric 5	Prepreg	2.8mil				
4	Bottom Layer	Signal	1.378mil	4			
	Bottom Solder	Solder Mask	0.4mil				
	Bottom Overlay	Overlay					

Components

- Created schematic and footprint libraries:
 - Consistency
 - Gate driver: IPC compliant footprint wizard
 - GaN DFN: manual footprint creation
 - Use datasheets for dimensions
- BOM: given approved supplier list
 - Quality control
 - Leverage partnerships

Testing Points

- Design for testing (DFT) aligns with project objective
- GaN gate probing: minimize probe loop
- Test points for:
 - Gate driver pins
 - Gate pins
 - Hall sensor pins
 - Power and grounds
- Considered test pads:
 - Difficult to probe

ICs

- Datasheets for layout and PSU guidelines
- Gate driver DFT
 - Header for EN signal
- Hall sensor
 - 0.5% precision resistor divider to set $V_{\rm OC}$

 $V_{OC} = \frac{S \times I_{OC}}{2.5}$

where

- S is the device sensitivity in mV/A.
- I_{OC} is the desired overcurrent threshold.
- V_{OC} is the voltage applied that sets the overcurrent threshold.

DSP Connection

- Options:
 - Jumper wires to headers:
 - Pros: simpler, \checkmark board area, \checkmark connection count
 - Cons: ↓ noise immunity, ↑ mis/disconnection risk
 - Ribbon cable:
 - Mitigate misconnection risk
 - Daughter board:
 - Mitigate misconnection and noise immunity risks
- Connect half of DSP \rightarrow future extensions
- Jumpers to change pins in case they fail
 - Part of DFT

Decoupling Capacitors

- Minimize line *L* and series *R*:
 - Place near DC source pins
 - Place near DC destination pins
- Multiple in parallel \rightarrow \checkmark Total ESR
- Ceramic:
 - ↓ Size
 - ↓ ESR
 - ↑ Reliability
 - \uparrow Q at \uparrow frequency
- Rated voltage > $2V_{\rm c}$

LED Indicators

- For DFT and better user experience
- DSP 3.3V Power
- Driver 12V Power
- Driver 3.3V Enable
- Current-limiting resistors to ensure nominal $I_{\rm f}$

Trace Width

ANSI PCB TRACE WIDTH CALCULATOR									
Input Da	ta	Results Data							
				Internal [•]	Internal Traces External Traces				
Field	Value	Units	Trace Data	Value	Units	Value	Units		
Current (max. 35A)	5	Amps 🗸	Required Trace Width	290.44	mil 🗸	111.65	mil 🗸		
Temperature Rise (max. 100°C)	10	°C 🗸	Cross-section Area	390.29	mil² 🗸	150.03	mil² 🗸		
Cu thickness	1	oz/ft² ✔	Resistance	0	Ω Ohms	0	Ω Ohms		

- IPC-2221 standard
- Power traces: design for 10°C rise @5A as a FOS
- Current shared across layers
 - Sum widths for effective
- Driver output current:
 - <50 mA average (sim)
 - <1.6 A peak (sim)
 - Design for peak \rightarrow 28 mil

DC Bus Capacitors

- Minimize power loop inductance:
 - Commutate current as fast as possible
 - Avoid switch overvoltage during DT
- Bulk (film) and links (ceramic)
 - Film: ↑ dv/dt, ↑ current, ↓ selfinductance
- Polygons:
 - Maximize $V_{\rm bus}$ to GND overlap
 - Minimize V_{bus} or GND overlap with switch node!

Thermal Vias

- Bottom-cooled devices
 - \rightarrow thermal vias \rightarrow heatsink pad
- Maintain distance from drain pin
- Internal copper layers

7

6

5

4

2

R₀ (°C/W)

High Voltage Clearance

- IPC-2221 standard
- Power traces: design for 750V as a 10% FOS
- Challenge: maintain clearance while keeping layout compact and adding test points
 - Spent most time on this!
 - Iterated through layout ideas in design reviews
- Sanity check: DFN drain-to-source clearance:

Silkscreen

- PCBs are a piece of art!
- White silkscreen + green solder mask
 - Best looking and \uparrow fabricator capabilities

6/9 Fabrication

PCB Order

- 5 boards from *PCBWay*:
 - DFM rules for Altium
- S1000H TG150:
- Time constraint:
 - 1oz Cu: still supports 5A
 - No assembly
- 4-layer stackup: >3kV

2 4-layers PCB 📄 Regular

Thickness: **1.6MM** Finished Outer Copper: **1OZ** Inner Copper: **1OZ** Inner layer Residual copper ratio: **50%**

Layer	Material	Thickness (mm)	Thickness after lamination(mm)
L1-CU	Outer Base Copper 0.5OZ	0.0175	0.0175 (Plating to 1OZ)
PP	7628 RC46% DK:4.74	0.1960	0.1785
L2-CU	Inner Copper 1OZ	0.0350	
CORE	Core DK:4.6	1.0300	1.1 (Core with Cu)
L3-CU	Inner Copper 1OZ	0.0350	
PP	7628 RC46% DK:4.74	0.1960	0.1785
L4-CU	Outer Base Copper 0.5OZ	0.0175	0.0175 (Plating to 1OZ)

* Thickness after lamination: 1.49mm, tolerance: ±10% * Finished PCB Thickness: 1.59mm, tolerance: ±10%

*40% < Inner layer Residual copper ratio ≤ 60%, it is suitable to choose a lamination structure with 50% inner layer Residual copper ratio.

Soldering

- No access to reflow oven $\boldsymbol{\boldsymbol{\varpi}}$
 - Not worth using stencil
- Manual through-hole and SMD soldering
- Challenge: heating large $C_{\rm DCL}$ and $C_{\rm sn}$ pads
 - ↑ Temperature

DFN Soldering

- Thermal pad + huge heatsink area:
 - Solder paste + hot air gun + preheater
- Challenge: solder leaking through vias

Hand Soldering/Desoldering

This slide shows recommended procedures for hand soldering/desoldering.

Hand soldering:

- 1. Attach a thermocouple close to the device pads for temperature monitoring.
- 2. Apply solder paste and flux to all the pads on the PCB. Alternatively, the pads can be pre-tinned using standard solder with solder flux added after pads are tinned.
- 3. Place the device on the board and align it properly.
- 4. Preheat the board to about 100-120°C using pre-heating station or hot plate. Apply a small force on top of the device to hold it down and use hot air gun to blow hot air from the top until the temperature reaches 260-280°C. Apply heat for 20-30 seconds.
- 5. Remove the force and heat.
- 6. Clean excess flux after it has cooled.

Desoldering:

- 1. Preheat the board to 100-120°C using a pre-heating station or hot plate.
- 2. Use a hot air gun to blow hot air at 260-280°C. Use tweezer to remove device once it is loose.

Heatsinks

- 55°C phase change TIM
 - Hot air gun to heat
 - Solidifies and adheres to pad and heatsink

Testing on bare aluminum piece

Verification

- Digital multimeter and inspection
- Continuity checks:
 - Proper connections
 - No solder bridges
 - TIM isolation
- Diode checks:
 - Correct polarity
- Resistance measurements

7/9 **Firmware**

PLECS

- Primarily for power electronics simulation and control
- Block-based programming
 - C2000 software development kit
 - Automatic code generation

LED Indicators

• Indicate flashing is complete and DSP is running

Hall Sensor ADC

Calculate output current

$V_{OUT} = (I_{IN} \times S) + V_{REF}$

where

- V_{OUT} is the analog output voltage.
- IIN is the isolated input current.
- S is the sensitivity of the device.
- V_{REF} is the zero current reference output voltage for the device variant.

Gate Driver Enable

- Manual enable or tie to ~OC:
 - Former is done with switch while DSP is connected

PWM Signal

- Symmetrical carrier \rightarrow better harmonics
- Complementary output
- Settable frequency and dead time

🔰 Block	Paramete	rs: DSP Program	m v2/PW	M		\times	
PWM (m	nask) (link) -						
Genera	te a PWM si	ignal pair.					
The car the inpu	rier starts a ut is greater	t 0 and varies b than the carrie	etween 0 r.	and 1. The	PWM output is a	ctive when	
Main	Output	Pro tection	Sync	Events	Offline only	Dep 1 🕨	Main
PWM a	enerator(s)	[1N]:					Mode:
[5]							Complem
[J]							Blanking t
Carrier	type:						Disabled
Symme	etrical (carri	er counts up/do	wn)			\sim	Blanking T
Carrier	frequency	[Hz]:					50e-9
60*33	33						Polarity:
-							Active st
Freque	ncy tolerand	ce:					Sequence
Round	to closest a	achievable value	2			~	Positive
Phase(s	s) [pu]:						Enable po
							Hide
							THORE

Main	Output	Pro tection	Sync	Events	Offline only	Dep 1 🕨			
Mode:									
Comp	lementary ou	tputs				\sim			
Blankin	ig time variati	ion:							
Disabl	ed					\sim			
Blanking Time [s]:									
50e-9									
Polarity	/:								
Active	state is logic	:'1'				\sim			
Sequer	Sequence:								
Positiv	/e					~			
Enable	port:								
Hide						~			

PWM Verification

• Confirm dead time and frequency

8/9 **Testing**

Validation Objectives

- 1. Open loop
- 2. Gate driving:
 - Driver IC
 - Bootstrapper
 - Level-shifter
- 3. Modulation (constant duty, SPWM, dead time)
- 4. Oscillations and spikes
- 5. Filter and output

Testing Strategy

- 1. Connect DSP (orange LED 1)
- 2. Flash firmware (start at $\forall V_{\text{bus}}, \forall f_{\text{sw}}, \uparrow T_{\text{dead}}$)
- 3. Power gate driver (orange LED 2) and DC bus
- 4. Enable gate driver (green LED)
- 5. Disable gate driver
- 6. Change parameters and re-flash
- 7. Repeat 4-6

Equipment and Probing

- Digital oscilloscope
- Isolated power supplies:
 - <10kW for HV bus</p>
 - <30V for gate driver and LV bus
- High signal-bandwidth probes:
 - Differential voltage
 - Current clamp
- Thermal camera

Test #1: Gating

Thu Aug 29 07:05:28 2024

X1 Source

X2 Source

4 5.00V/

- Gate driver and level-shifting
- No load, 200kHz, 50ns DT
- Undetectable Miller plateau

DS0-X 2024A, MY58104307: Thu Aug 29 07:04:40 2024
Test #2: Switch Node

- 10V bus, no load
- Some ringing

DS0-X 2024A, MY58104307: Thu Aug 29 07:38:26 2024

Test #2: Switch Node

Test #3: SPWM

- 20V, 0.55mH, 10μF, 25Ω 100W
- Gate driver hotter than switches

DS0-X 2024A, MY58104307; Fri Aug 30 07:25:40 2024

5.000g/

Stop

KEYSIC TECHNOL

High Res

5.00MSa/s

Cursors

+8.1000000

ΔΧ:

<u>Y 1(1)</u>

665 Nª

Forgot to decrease DSP

discretization step size

5.00V/

Test #4: Stress Test

- Constant duty cycle (sync. buck)
- Trial #1: 600V 3A 100kHz 150ns DT
- Trial #2: 700V 2A 100kHz 150ns DT
- Failure analysis:
 - ~40 °C, ∴ not thermal
 - Open-circuit, ∴ voltage breakdown
 - Voltage spikes from parasitic inductances

9/9 Conclusion

Improvements

- Further mitigate parasitic inductances
 - Explore different layouts (more compact and fewer vias)
 - Design snubber experimentally
- Silkscreen border around components
 - Prevent soldering mistakes
- Explore TIM alternatives
 - Avoid phase change at 55 °C
 - Heatsink spring clips
- Probe LS gate with short ground clip
 - Minimize probe loop inductance
 - Mitigate any influence on system performance

Probe pads close to device under test

Outcome and Achievements

- GaN synchronous buck converter
- Excellent gate driving at 100 kHz
- Learned a lot!
 - End-to-end ownership, making decisions, design review communication, collaboration, design iteration
- Completed exploration in half the planned time
 - 8 mo. → 4 mo.
 - Got most things working first try

Next Steps

- 1. Negative current testing
 - Idea #1: Operate as boost (risky!)
 - Idea #2: Full-bridge (gating sync!)
 - Idea #3: Center tap (capacitor ratings!)
 - Idea #4: Negative V_{bus}
- 2. Efficiency analysis (power analyzer)
- 3. Closed-loop control
- 4. Three phase inverter (with better layout)
- 5. PCB-stator PMSM test

Acknowledgements

- Prof. Peter Lehn
 - Supervision
- Sayed Mohamed
 - Feedback and mentorship
- LAPCSA members
 - Guidance and support

Questions?

